СтройПортал

Статьи и рекомендации

Нивелиры

В последнее время в работе с заказчиками часто приходится сталкиваться с вопросами о правильном подборе оптического нивелира для определенного вида работ. Подобные вопросы неоднократно поднимались и в Интернете. Речь идет не о том, какая марка или продукция какой компании наиболее подходит для выполнения той или иной работы, а непосредственно о тех технических характеристиках, которыми должен обладать прибор, используемый для какого-то конкретного вида работ. Появление таких вопросов, на наш взгляд, закономерно — и причин этому несколько. Во-первых, за последние годы на российском рынке появилось огромное количество моделей нивелиров различных зарубежных фирм. Часто продукция разных производителей имеет одинаковую маркировку. В таком обилии информации бывает тяжело разобраться. Во-вторых, большинство документов (СНиПов, Инструкций, ГОСТов), регламентирующих порядок тех или иных работ, рекомендуют использовать в разных случаях нивелиры, выпуск которых давно прекращен. Как быть в этом случае? В данной статье мы постарались собрать и систематизировать информацию, которая может быть полезна при подборе необходимых приборов.

Начнем с самого начала. Оптический нивелир — это прибор, предназначенный для определения превышений (разности высот) между точками методом геометрического нивелирования по вертикальным нивелирным рейкам. Геометрическим нивелированием называется метод нивелирования горизонтальным лучом.

Затем ответим на вопрос: «Как классифицируются оптические нивелиры?» Для этого обратимся к ГОСТ 10528-90 Нивелиры. Общие технические условия. Согласно требованиям стандарта оптические нивелиры подразделяются на три группы: высокоточные, точные и технические. По названию групп видно, что основная характеристика для разделения оптических нивелиров на группы — точность. Точность оптического нивелира определяется средней квадратической погрешностью измерения превышения на 1 км двойного хода. Значение погрешности приводится в миллиметрах.

ГОСТ 10528-90 регламентирует требования к конструкции нивелиров. Например, высокоточные и точные оптические нивелиры (согласно ГОСТа) могут изготавливаться в двух исполнениях: с цилиндрическим уровнем при зрительной трубе и с компенсатором; технические оптические нивелиры — с компенсатором. Заметим, что в настоящий момент практически все оптические нивелиры, относящиеся к группе точных, также имеют компенсаторы.

Точные и технические оптические нивелиры изготавливаются со зрительной трубой прямого изображения, высокоточные — и прямого, и обратного.

Технические требования ГОСТа для оптических нивелиров всех групп приведены в Таблице 1 (по тексту ГОСТа, также Таблица 1).

Следует помнить, что требования, приведенные выше, используются при разработке отечественных нивелиров и действуют только на территории нашей страны. Но, используя данные Таблицы 1 и зная технические характеристики нивелира, произведенного за рубежом, можно определить к какой группе приборов он относится (в российской классификации).

Подробно рассматривая технические требования к приборам, ГОСТ 10528-90 ни слова не говорит о том, в каких видах работ должны применяться различные нивелиры. Исполнитель при выборе оптического нивелира для конкретного вида работ должен руководствоваться не требованиями ГОСТ 10528-90, а положениями конкретных СНиПов, Инструкций, ГОСТов, которые регламентируют порядок конкретных работ, предъявляя требования и к точности измерений, и к инструментам, с помощью которых эти измерения производятся.

Прежде чем рассмотреть пример, введем еще одно понятие, без которого нам не обойтись в дальнейших рассуждениях — понятие точности измерений. Точность измерений — это качество измерений, отражающее близость их результатов к истинному значению измеряемой величины. В геометрическом нивелировании точность подразделяется по классам, различают нивелирование I, II, III и IV классов. Для достижения точности определенного класса мало использовать соответствующий нивелир, нужно выполнить еще целый ряд условий (ограничений) — например, по допустимой длине плеч, разнице плеч, порядку наблюдения на станции и т.п. Такие условия должны содержаться в методиках выполнения измерений, что оговорено действующим законодательством РФ. Статья 9 Закона РФ «Об обеспечении единства измерений» гласит: «Измерения должны осуществляться в соответствии с аттестованными в установленном порядке методиками». Кроме этого, невязки, полученные в результате работ, не должны превышать установленных для данного класса точности допустимых значений.

ГОСТ 24846-81 ГРУНТЫ. МЕТОДЫ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ устанавливает методы измерения деформаций (вертикальных и горизонтальных перемещений, кренов) оснований фундаментов строящихся и эксплуатируемых зданий и сооружений. Один из основных методов определения вертикальных деформаций — геометрическое нивелирование. В зависимости от предполагаемых значений деформации, а также в зависимости от типов грунтов, на которых расположены здания и сооружения, ГОСТ предписывает использовать измерения различных классов точности. Основные технические характеристики и допуски для геометрического нивелирования принимаются в соответствии с Таблицей 2 (в тексте ГОСТа Таблица 3) .

Из таблицы видно, что при определении вертикальных деформаций нивелированием I и II класса, необходимо использовать нивелир Н-05 или равноточной ему, а для III и IV классов — нивелир Н-3 или равноточный ему. Как уже указывалось выше, нивелиры Н-05 и Н-3 давно не выпускаются, значит исполнитель должен подобрать современные модели, равноточные упомянутым нивелирам. Нивелир Н-05 относится к группе высокоточных, а нивелир Н-3 — к группе точных нивелиров. Поэтому, подбирая равноточную модель, необходимо руководствоваться требованиями ГОСТ 10528-90 Нивелиры. Общие технические условия., которые приведены в Таблице 1.

Несколько проще дело обстоит со «свежими» руководящими документами, где указываются не конкретные модели, а технические характеристики, которым должен соответствовать прибор. В качестве примера приведем документ — «Инструкция по нивелированию I, II, III и IV классов», Москва, ЦНИИГАиК, 2003 год. Положения Инструкции обязательны «для всех предприятий, организаций и учреждений, выполняющих топографо-геодезические и картографические работы независимо от их ведомственной принадлежности и форм собственности». Требования Инструкцией к нивелирам, используемым для измерений различных классов точности, приведены в Таблице 3 (по тексту Инструкции Таблица 4, стр.52).

Пользоваться информацией в таком виде гораздо удобней. Инструкция содержит все необходимые сведения для подбора нужного инструмента.

До сих пор мы говорили о технической стороне вопроса, но следует помнить, что существует и другая сторона — правовая. Дело в том, что нивелир является средством измерений, попадающим в сферу распространения государственного метрологического контроля и надзора. Согласно Закона РФ «Об обеспечении единства измерений», средства измерений подобного рода подвергаются обязательным испытаниям с последующим утверждением типа средств измерений. Решение об утверждении типа средств измерений принимается аккредитованными органами Федерального агентства по техническому регулированию и метрологии и удостоверяется сертификатом. После процедуры сертификации информация о приборах вносится в Государственный Реестр средств измерений РФ. Средства измерения, не подвергавшиеся испытаниям, не имеющие сертификата об утверждении типа, не внесенные в Реестр, к использованию не допускаются. В настоящее время Государственный Реестр средств измерений РФ открыт и доступен для любого пользователя сети Интернет. Ознакомиться с его содержанием можно на сайте Всероссийского научно-исследовательского института метрологической службы (ВНИИМС). Адрес сайта в Интернете http://www.vniims.ru.

В дополнение следует сказать, что по требованиям статьи 15 того же Закона нивелиры подвергаются поверке органами Государственной метрологической службы при выпуске из производства или ремонта, при ввозе по импорту и эксплуатации. Межповерочный интервал для нивелиров, как правило, составляет один год.

Как мы смогли убедиться, аспектов, которые необходимо учитывать при решении казалось бы такого простого вопроса, как выбор оптического нивелира, необходимого для определенной работы, достаточно много. Для того чтобы облегчить задачу для наших действующих и потенциальных клиентов, приведем еще одну таблицу. В Таблице 4 собрана информация по классификации нивелиров зарубежного производства, поставляемых ЗАО «ГЕОСТРОЙИЗЫСКАНИЯ», определены отношения нивелиров к группам согласно ГОСТ 10528-90, даны номера записей в Реестре средств измерений РФ.

Надеемся, что статья окажется полезной для наших читателей. С любыми возникшими дополнительно вопросами вы можете всегда обратиться к менеджерам ЗАО «ГЕОСТРОЙИЗЫСКАНИЯ».

Литература:

  1. ГОСТ 10528-90 НИВЕЛИРЫ. Общие технические условия.
  2. ГОСТ 24846- 81 ГРУНТЫ. МЕТОДЫ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ ОСНОВАНИЙ ЗДАНИЙ И СООРУЖЕНИЙ.
  3. «Инструкция по нивелированию I, II, III и IV классов», Москва, ЦНИИГАиК, 2003 год.
  4. Закон Российской Федерации от 27 апреля 1993 г. №4871-1 «Об обеспечении единства измерений»
  5. Информационное обеспечение поверочных работ. Шелагин С.П. «Геостройизыскания», 2008г.
  6. Каталог «Геостройизыскания», Выпуск 8, Москва, 2008 г.

Как используют оптический нивелир для устройства основания

Допустим, нам необходимо подготовить и выровнять основание на небольшом участке под индивидуальный дом. В первую очередь определяем среднюю высотную отметку на площадке. Для этого все полученные значения (кроме отметки чистого пола) необходимо суммировать и разделить на 20. Предположим, средняя величина составила 1,7 м.

Иллюстрация Описание действия
Первый этап – нанесение разметки в виде сетки.
Для этого используем специальные деревянные конструкции.
Для каждой точки с помощью нивелира и рейки была определена высотная отметка.

Следующий этап – рытьё котлована. В нашем случае минимальное значение высоты составило 1,55 м, максимальное − 1,7 м. Уровень чистого пола оказался на отметке 1,25 м. Исходя из полученных данных, определяем необходимую толщину слоя засыпки под наше основание: она составит 1,7 − 1,25 = 0,45 м.

Как пользоваться оптическим нивелиром при строительстве фундамента

Алгоритм действий практически идентичен подготовке основания, с тем лишь отличием, что в этом случае фундамент уже готов, если лишь необходимо выровнять. Итак, последовательность работ:

  1. Установите нивелир так, чтобы чётко видеть каждый угол фундамента в относительно узком поле зрения (90° или меньше). Это поможет избавиться от ошибок, связанных с поворотами нивелира на большие углы. Чтобы свести к минимуму ошибку, установите нивелир над фундаментом как можно ниже.
  2. С помощником, удерживающим рейку, прострелите внешние углы a, b, c, d и запишите их высоту. В нашем примере самый высокий угол b.
  3. Из высоты самого высокого угла вычтите высоты остальных углов и запишите разницу − это будет толщина прокладок.
  4. Подкладками выведите углы до уровня высокого угла с допуском ±1,5 мм.
  5. Протяните шнурку между углами. Натянув шнур горизонтально, положите стальные прокладки между лежнем и фундаментом под все лаги, балки и точечные нагрузки.
  6. Для грубой подгонки лежня к шнуру в нужных местах положите подкладки.

Это общие рекомендации при работе с нивелиром на разных строительных этапах постройки дома.

Ошибки, которые допускаются при использовании оптического нивелира

Для новичков, впервые приступающих к работе с нивелиром, важно учесть некоторые особенности:

  1. Важно обеспечить сохранность прибора. Он хоть и защищён разного рода покрытиями, но чувствителен к ударам и толчкам. Для того чтобы полностью исключить погрешности прибора, стоит позаботиться о том, чтобы все крепёжные элементы и детали были в рабочем состоянии и функционировали исправно.
  2. Не упускайте шанс использовать дополнительные штативы и крепежи. Это позволит сохранить прибор даже при внезапном порыве ветра.
  3. Не стоит полностью доверять данным, указанным в инструкции. Стоит самостоятельно проверить возможности прибора. Если вы покупаете уже не новый аппарат, лучше провести его поверку в специализированном учреждении.
  4. Не забывайте, что при работе с нивелиром обязательно нужен напарник.
  5. А во время установки рейки она должна стоять точно на поверхности, чтобы избежать перекосов. Пусть даже если это овраг или лунка, линейка должна упираться в дно.
  6. Не допускайте перегрева прибора. Это может сказаться на точности измерений.

Определение превышения точек

Как устанавливать инструмент мы разобрались, теперь рассмотрим, как определять с помощью нивелира разность высот двух и более точек. Для этого нам понадобится рейка и помощник, который будет рейку держать и переносить туда, куда нужно.

Выбираем первую точку измерения (обозначим ее «а»), на которую помощник ставит рейку по возможности вертикально. Вертикальность можно корректировать по вертикальной риске визирной сетки, подавая соответствующие сигналы помощнику.

Наводим прибор на рейку, сначала приблизительно, пользуясь «прицелом» сверху трубы. Смотрим в окуляр и, вращая маховик, добиваемся четкой видимости рейки.

Снимаем показания. Для этого смотрим, между какими значениями рейки оказалась горизонтальная линия визирной сетки, добавляем к нижнему значению количество сантиметровых делений между линией значения и линией визира прибора (или, если это удобнее, вычитаем из верхнего значения).

К примеру, риска легла чуть больше чем на три деления выше цифры 15. Нужно записать в блокноте значение 153, округляя до сантиметра в большую или меньшую сторону.

Даем команду помощнику перенести рейку на следующую точку («б») и снова выполняем замеры. Допустим, на рейке мы увидели значение «18» а наша риска чуть-чуть не добралась до «буквы Е», которая соответствует пяти делениям (сантиметрам). Значение высоты будет равно 185. Записываем его.

Поскольку горизонт нивелира неподвижен, а двигается рейка, то чем она ниже, тем больше значение мы увидим в объективе. Вычитаем: 185-153=32 Точка «б» ниже точки «а» на 32 сантиметра.

Определение превышения точек

Назначение нивелира

Одной из важнейших геодезических работ, проводимых при строительстве каких-либо объектов, является нивелирование.

Для этих целей применяется соответствующий инструмент –нивелир.

Целью данной операций является определение на местности разности высот конкретных точек, а также изучение форм рельефа.

Нивелиры используются при:

  • проектировании, и создании геодезических структур высокой точности;
  • монтаже технического оснащения и конструкций, например, для установки столбов ЛЭП;
  • декорировании местности, выравнивании больших площадей;
  • прогнозировании величины оседания каких-либо построек;
  • строительных работах внутри помещений, например, монтаже полов, потолков.

В быту нивелиры часто применяют при ремонте помещений.

Для этих целей существует отдельный вид приборов, которые часто называют лазерными уровнями.

Они проецируют на плоские поверхности лазерные лучи и отлично подходят для разметки углов.

Кроме прочего, применение лазерного нивелира обеспечивает точность укладки кафеля и любого материала, где требуется соблюдение прямых углов и линии.

По этой причине прибор используют и для оклейки обоев, где требуется соблюдать строго вертикальные линии стыков.

Для электрика нивелир также будет полезен.

С его помощью можно четко позиционировать расположение розеток, выключателей, предохранительных щитов на одном уровне от пола, либо же относительно горизонта.

Также в быту используют простейшие гидростатические нивелиры, работающие по принципу двух сообщающихся сосудов с жидкостью.

Как выбрать нивелир?

Выбирая бытовой лазерный нивелир, нет смысла тратиться на дорогостоящий прибор, так как даже бюджетные модели позволят выполнять разметку внутри комнат любых размеров.

Для этого будет вполне достаточно минимальной длины луча.

Кроме того, чем меньше размеры помещения, тем меньшими будут угловые погрешности.

Достаточно осмотреть корпус на наличие повреждений, а также проверить лазерный уровень пузырьковым аналогом.

При выборе полупрофессиональных моделей, а также приборов для профессиональной строительной и геодезической деятельности, важными параметрами, на которые следует обратить внимание, будут:

• Количество лучей. К стандартным двум лучам, строящим линии по вертикали и горизонтали, добавляются несколько дополнительных. Как правило, расположены они по бокам устройства.

• Дальность свечения. Если этот параметр, который указывается производителем, равен 30 метрам, лучи буду светить и на большие дистанции. Но следует помнить, что по превышению указанного порога дальности, их толщина увеличивается, что приводит к снижению точности отметок.

• Наличие системы самовыравнивания. Это позволит экономить время на точном позиционировании устройства относительно горизонта.

• Угол развертки лучей. Хорошо, если этот параметр составит 110° — 130°.

• Элементы питания. Чем они проще, тем лучше. В идеальном случае прибору для работы необходимо будет две или три пальчиковые батарейки типа ААА. Также хороший вариант – аккумуляторная батарея.

• Дополнительные аксессуары.

В комплект поставки некоторых моделей входят защитные лазерные очки.

Они не только предохраняют глаза от воздействия излучения приборов, но в них и сам луч видно лучше при любой погоде.

Для комфортной работы также нужен штатив, особенно в тех случаях, когда прибор нужно приподнять на определенную высоту.

Для фиксации нивелира в различных местах требуется крепление типа «прищепка”.

Более удобным будет вариант с универсальным магнитным креплением.

Прибор с богатой комплектацией обойдется дороже, но, если покупать аксессуары по отдельности, их стоимость выйдет еще выше.

• Профессиональный нивелир оснащается дополнительными регулировками.

В частности, модели с мини-штативами, которые расположены прямо в корпусе, имеют винты плавной наводки, которые позволяют выполнить настройку прибора максимально правильно.

Кроме прочего, нивелиры должны иметь надежную защиту от пыли и других внешних факторов.

Определить степень защиту можно по маркировке.

Стандартной принято считать IP54 – влагоустойчивое устройство, которое подойдет для работы и под дождем, и на пыльной строительной площадке.

Для защиты от падения нивелиры должны иметь противоударный корпус и демпферные накладки.

Некоторые модели оснащаются внутренними амортизаторами, которые защищают электронные компоненты от повреждений.

Что нужно знать о нивелирах?

• Можно продлить время работы лазерного нивелира на одном заряде, отключив неиспользуемые лучи.

Такая экономия батареи будет особенно полезной для «прожорливых” ротационных приборов.

• Поддержка дистанционного управления упрощает работу с нивелиром на больших строительных площадках.

• Оптические нивелиры, в зависимости от конструкции, могут давать как нормальное, так и перевернутое изображение.

Для последних выпускается нивелирная рейка с перевернутыми числами.

При проведении замеров повышенной точности применяют рейки из специального сплава – инвара.

  • Закрыть
  • +7 (495) 921-22-08
  • Каталог
    • Специальные предложения
    • Тахеометры
    • ГНСС оборудование
    • Гиростанции
    • Лазерные дальномеры
    • Теодолиты
    • Нивелиры
    • Лазерные построители
    • Приборы вертикального проектирования
    • Полевые контроллеры
    • Системы лазерного сканирования
    • Прочее оборудование
    • Системы управления техникой
    • Беспилотные летательные аппараты (БПЛА)
    • Приборы для поиска подземных коммуникаций и металлических объектов
    • Приборы контроля и диагностики
    • Программное обеспечение
    • Печатная продукция
    • Сувенирная продукция
    • Trade-In
    • Распродажа и инструменты Б/У
  • Корзина
  • Спецпредложения
  • Контакты
  • Базовые станции
    • Описание технологии
    • Сайт сети ПДДС ГСИ
  • Сервисный центр
    • Услуги сервисного центра
    • Мобильная сервисная служба
    • Региональные сервисные центры
    • Правила эксплуатации
    • Вызов мобильного сервисного центра
  • Поддержка
    • Учебные материалы
      • О компании
      • Современные технологии
        • Тахеометры
        • ГНСС
        • Теодолиты
        • Программное обеспечение
        • Интеграция технологий
        • Лазерное сканирование
        • Управление строительной техникой
        • Георадары
      • Страничка истории
      • Плакаты
    • Статьи
      • Полезная информация
        • Расшифровка кода пыле- и водозащиты IPxx международного стандарта IEC
        • Измерения расстояний тахеометром SET530R в безотражательном режиме. Результаты испытаний
        • Измерения расстояний тахеометром Sokkia SET2130R3 в безотражательном режиме. Результаты испытаний
        • Пресс-релиз Международного Института Истории Геодезических Измерений
        • Порядок обработки измерений с приемников Stratus в программе SpectrumSurvey версии 3.3 и ниже
      • Внимание! Розыск!
        • Внимание! Розыск!
      • Система MONMOS
        • Использование MONMOS (SOKKIA) для контроля и диагностики бумагоделательных машин (БДМ)
        • MONMOS – система для высокоточных промышленных измерений
        • Новые возможности аппаратно-программного комплекса MonMoS
      • Спутниковые геодезические системы
        • Сети базовых станций. Базовые станции в Самаре и Санкт — Петербурге
        • Одночастотный GPS-приемник Stratus
      • Контроль деформации
        • Современные автоматизированные системы контроля деформации большепролетных конструкций
      • Программное обеспечение
        • … и Topocad Вам в помощь, господа геодезисты!
        • ТРАНСКОР 2.0 — изменения по сравнению с Транскор 1.0
        • Новые возможности программы ТРАНСФОРМ 3.0
        • MAPSUITE+ — новый программный комплекс для геодезистов
      • Технологии
        • Наземное лазерное 3D сканирование
        • Сбор ГИС данных
        • Технология «Гибрид»
        • Передача данных с помощью программы Mapsuite+ из тахеометров Sokkia в персональный компьютер
        • Использование безотражательных тахеометров и систем комплекса CREDO для съемки фасадов зданий («Геопрофи», № 5, 2003)
        • Технологии сбора топогеодезической информации наземными средствами. Обзор современных приборов для сбора ТГИ
        • Использование программы PROLINK/PROLINK COMMS для обмена данными между электронными тахеометрами SET и компьютером
        • Съемка фасадов зданий и обработка полученных результатов с помощью программных продуктов CREDO третьего поколения (Credo III)
        • Революционная RED-tech технология
      • Электронные тахеометры
        • Новые пленочные отражатели VEGA серии М
        • Программное обеспечение MAGNET Field on Board
        • Тахеометры Sokkia — тахеометры XXI века (серий 130R3)
        • Некоторые рекомендации по использованию электронных тахеометров SET600, SET500, SET300 производства фирмы SOKKIA
        • Обзор безотражательных электронных тахеометров, предлагаемых ЗАО «ГЕОСТРОЙИЗЫСКАНИЯ»
        • Чтобы тахеометр работал долго (основы безопасности жизнедеятельности для электронных тахеометров)
        • Новые безотражательные тахеометры Sokkia серии 030R3
      • Нивелиры
        • Классификация нивелиров или как подобрать нужный инструмент
        • Нивелиры с компенсатором — притормозим или нагрузим?
      • Георадары
        • Георадар как универсальный поисковый прибор
      • Приборы неразрушающего контроля
        • Сравнение текущих затрат ТПГ Ridgid ST510
        • Сравнение текущих затрат ТПП Dynatel 22ххM
        • Тепловизоры Testo. Интерфейс LabVIEW
        • Тепловизоры Testo. Высочайшее разрешение SuperResolution
        • Тепловизоры Testo. Фокусное расстояние
        • Тепловизоры Testo. Точная температура
        • Методика и техника дефектоскопии бетонов и других искусственных каменных материалов
        • Методика и техника для контроля прочности бетонов и других искусственных каменных материалов
      • Страничка истории
        • Саблинская базисная сеть
        • Визит в SOKKIA BV
    • Инструкции
    • Видеоинструкции и фильмы
    • Учебный центр
      • Условия участия
      • Программы семинаров
        • Использование ГНСС (ГЛОНАСС-GPS) оборудования для сбора пространственной информации
        • Обзор функциональных возможностей программного продукта TOPOCAD (Adtollo)
      • Консультации
    • Что делать, если у вас украли прибор
  • Новости
    • Нерабочие дни
    • Видеоотчет о проведенных online семинарах
    • Благодарность от Дорожников!
    • Подарок при покупке тахеометра Sokkia
    • Мы работаем для Вас
    • Результаты розыгрыша призов для геодезистов и их коллег!
    • Сеть на территории Московской области получила статус СДГС
    • ГЕОСТРОЙИЗЫСКАНИЯ 25 лет! Нас не догонят!
    • Национальная земельная служба Финляндии выбирает TOPCON!
    • Это Вам не Швейцария!
  • О нас
    • О компании
    • Как купить
      • Оплата
      • Получение
      • Доставка
      • Trade-In
      • Конфиденциальность
      • Как купить
    • Контакты
    • Вакансии
    • Музей
      • Мензульная съемка
      • Инструменты для линейных измерений
      • Нивелирование
      • Угломерные приборы
        • Теодолиты
        • Угломерные приборы
      • Приборы специального назначения
      • Глоссарий
      • Изготовители
        • Отечественные фирмы-производители
        • Зарубежные производители
        • Государственный оптический институт им. С. И. Вавилова
        • История Уральского оптико-механического завода
        • Уральский приборостроительный завод
        • Знаки предприятий оптической промышленности СССР
        • Депо карт и квартирмейстерская часть накануне Отечественной войны 1812 года
        • История фирмы Е.С.Трындина Сыновей
        • История фирмы Ф.Швабе
        • Фирма П.И. Громова
        • Фирма И.Я.Урлауб
        • Фирма Франца Зегера
        • Карл Цейсс
    • Библиотека
      • Учебники
      • Руководства
      • Каталоги

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Наверх